Apigenin is one of the flavonoids - more precisely one of the citrus bioflavonoids. Just like most flavonoids, it has antioxidant, anti-inflammatory, and anti-tumor properties. Perhaps apigenin can even block the formation of uric acid leading to beneficial effects in the prevention of gout.
Apigenin is found in high amounts in several herbs including parsley, thyme, and peppermint. It is is also found in a number of other herbs, including chamomile herb, Horsetail herb, lemon balm herb, perilla herb, vervain herb, and yarrow. Red wine and tomato sauce contain this flavonoid, too.
Apigenin supplement
You can purchase
chamomile
extract herbal supplement online.
Which supplement would you recommend to get the highest
concentration of apigenin and/or hesperetin?
Chamomile and thyme appear to be good sources.
Benefits of apigenin
As with many flavonoids, it has potential to reduce the risk of
cancer since it has anti-tumor activity. Apigenin also could potentially be
useful in allergy conditions since it can have
anti-inflammatory properties.
Anti-inflammatory
Ibuprofen and apigenin induce apoptosis and cell cycle
arrest in activated microglia.
Neuroscience Lett. 2005.
In case of injury or disease, microglia are recruited to the site of the
pathology and become activated as evidenced by morphological changes and
expression of pro-inflammatory cytokines. Evidence suggests that microglia
proliferate by cell division to create gliosis at the site of pathological
conditions such as the amyloid plaques in Alzheimer's disease and the substantia
nigra of Parkinson's disease patients. The hyperactivation of microglia
contributes to neurotoxicity. In the present study we tested the hypothesis that
anti-inflammatory compounds modulate the progression of cell cycle and induce
apoptosis of the activated cells. We investigated the effects of ibuprofen
(non-steroidal anti-inflammatory drug) and apigenin (a flavonoid with
anti-inflammatory and anti-proliferative properties) on the cell cycle of the
murine microglial cell line BV-2. The findings indicate that apigenin-induced
cell cycle arrest preferentially in the G2/M phase and ibuprofen caused S phase
arrest. The binding of annexin V-FITC to the membranes of cells which indicates
the apoptotic process were examined, whereas the DNA was stained with propidium
iodide. Both apigenin and ibuprofen induced apoptosis significantly in early and
late stages. The induction of apoptosis by ibuprofen and apigenin was confirmed
using TUNEL assay, revealing that apigenin and ibuprofen
significantly increased apoptosis in BV-2 cells. The results from the present
study suggest that anti-inflammatory compounds might inhibit microglial
proliferation by modulating the cell cycle progression and apoptosis.
Depression
Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic
acid from Perilla frutescens plant in the forced swimming test.
Biol Pharm Bull. 2003.
We studied the effects of apigenin and 2,4,5-trimethoxycinnamic acid on the behavioral despair test (forced swimming test), and the
central noradrenergic, dopaminergic and serotonergic activities in mice.
Behavioral and biochemical results indicate its
antidepressant properties which may be mediated by the dopamine effects in the mouse brain.
Cancer
Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1
and HDM2/p53 pathways.
FASEB J. 2005.
The Mary Babb Randolph Cancer Center, Department of Microbiology, Immunology and
Cell Biology, West Virginia University, Morgantown, West Virginia
Apigenin is a nontoxic dietary flavonoid that has been shown to possess
anti-tumor properties and therefore poses special interest for the development
of a novel chemopreventive and/or chemotherapeutic agent for cancer. Our findings reveal a novel role of apigenin in
inhibiting HIF-1 and VEGF expression that is important for tumor
angiogenesis
and growth, identifying new signaling molecules that mediate this regulation.
Flavonoid apigenin inhibits motility and invasiveness of
carcinoma cells in vitro.
Int J Cancer. 2005.
Investigations of the mechanisms of the cancer-preventive activity of
apigenin (4',5,7,-trihydroxyflavone), a plant-derived, anti-carcinogenic
flavonoid, showed its interference with cell proliferation, survival, and gap
junctional coupling. We used a model based on non-invasive HeLa wild-type cells
and their connexin43 (Cx43) transfected counterparts to correlate the effect of
apigenin on tumour cell invasiveness with its influence on cell motility. Both
cell lines displayed similar motile properties in control conditions. Apigenin
treatment resulted in a significant and reversible inhibition of translocation
of both HeLa wild-type cells and HeLa Cx43 transfectants. The effect of apigenin
on cell proliferation was less pronounced especially at low apigenin
concentration, whereas its influence on cell motility correlated with the
reduction of the invasive potential of HeLa Cx43 cells as shown by an invasion
assay based on the confrontation of tumour cell spheroids with chick embryo
heart fragments. HeLa Cx43 cells were highly invasive in controls, but did not
invade the heart tissue at tumour cell aggregate-fibroblast capsule interfaces
in the presence of apigenin and failed to fully engulf these heart fragments.
Because the motility of chick heart fibroblasts was only slightly affected by
apigenin, these observations indicate that apigenin exerts its anti-invasive
effect on HeLa cells predominantly via a specific inhibition of tumour cell
motility. This inhibitory effect of apigenin on tumour cell invasiveness in
vitro demonstrates that apigenin may exert its anti-tumorigenic effect in vivo
via inhibition of tumour cell penetration of the healthy tissue.
Cervical
Apigenin induced apoptosis through p53-dependent pathway in human
cervical cancer cells.
Life Sci. 2005.
Apigenin is a widely distributed plant flavonoid and was proposed as an
antitumor agent. In this study, we reported for the first time that apigenin
inhibited the growth of human cervical carcinoma cells (HeLa) and through
apoptotic pathway. The results showed that apigenin significantly decreased the
viability of HeLa cells.
Apigenin-induced apoptosis in HeLa cells was confirmed by DNA fragmentation
assay and induction of sub-G1 phase by flow cytometry. Apigenin-treated HeLa
cells were arrested at G1 phase, which was associated with a marked increment of
the expression of p21/WAF1 protein. The induction of p21/WAF1 appeared to be
transcriptionally upregulated and was p53-dependent. In addition, apigenin
induced Fas/APO-1 and caspase-3 expression which were also correlated with
apoptosis. Apigenin decreased in the protein expression of Bcl-2 protein, which
is an anti-apoptotic factor. The conclusion of this study is the apigenin
induced p53 expression which caused cell cycle arrest and apoptosis. These
findings suggest that apigenin has strong potential for development as an agent
for preventing cervical cancer.
Gastrointestinal
Apigenin and its impact on gastrointestinal cancers.
Mol Nutr Food Res. 2013. Department of Pathology, Dalhousie University, Halifax,
Nova Scotia, Canada.
Apigenin is a flavonoid found in many fruits, vegetables, and herbs, the most
abundant sources being the leafy herb parsley and dried flowers of chamomile.
Present in dietary sources as a glycoside, it is cleaved in the gastrointestinal
lumen to be absorbed and distributed as apigenin itself. For this reason, the
epithelium of the gastrointestinal tract is exposed to higher concentrations of
apigenin than tissues at other locations. This would also be true for epithelial
cancers of the gastrointestinal tract. We consider the evidence for actions of
apigenin that might hinder the ability of gastrointestinal cancers to progress
and spread. It has been shown to inhibit cell growth, sensitize cancer cells to
elimination by apoptosis, and hinder the development of blood vessels to serve
the growing tumor. It also has actions that alter the relationship of the cancer
cells with their microenvironment. Apigenin is able to reduce cancer cell
glucose uptake, inhibit remodeling of the extracellular matrix, inhibit cell
adhesion molecules that participate in cancer progression, and oppose chemokine
signaling pathways that direct the course of metastasis into other locations.
Heart benefit
Chem Biol Interact. 2014 Dec 31. Apigenin attenuates heart injury in
lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase
1/sphingosine 1-phosphate signaling pathway.
Ovarian cancer
Dr. Margaret A. Gates, of Brigham and Women's Hospital and Harvard Medical
School, in Boston, Massachusetts, reviewed the foods commonly eaten over a
one-week period by 1,140 women with ovarian cancer and 1,180 women without. From
this information Dr. Margaret A. Gates and her team calculated the women's
intake of 5 common flavonoids -- myricetin, kaempferol, quercetin, luteolin, and
apigenin -- frequently obtained by drinking tea or red wine, or eating apples,
romaine or leaf lettuce, kale, blueberries, oranges, celery, or tomato sauce.
There was no connection between total flavonoid intake and ovarian cancer risk.
Only apigenin intake was associated with a suggestive decrease in ovarian cancer
risk. International Journal of Cancer, 2009.
Leukemia prevention
Consuming foods like celery and parsley which contain the naturally occurring
flavonoid apigenin may reduce the risk for leukemia. Maikel Peppelenbosch of the
University of Groningen in the Netherlands said in January 2010 that apigenin
was able to slow the development of two kinds of cells in leukemia and cut their
survival chances. The findings suggest apigenin could hold promise for
preventing leukamia. Maikel Peppelenbosch cautioned that his study had also
found the compound has chemotherapy resistance properties, suggesting it might
interfere with standard treatments for people already diagnosed with leukemia so
it should not be taken at the same time as chemotherapy for established disease
as it could interfere with the positive effects of treatment.
Dietary flavonoids as proteasome inhibitors and apoptosis
inducers in human leukemia cells.
Biochem Pharmacol. 2005 .
Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of
Medicine, Wayne State University,
Detroit, MI
It has been shown that proteasome activity is required for cancer cell
survival and consumption of fruits and vegetables is associated with decreased
cancer risk. Previously, we reported that grape extract could inhibit proteasome
activity and induce apoptosis in tumor cells. In this study, we examined the
flavonoids apigenin, quercetin, kaempferol and myricetin for their proteasome-inhibitory
and apoptosis-inducing abilities in human tumor cells.
Our results suggested that the proteasome may be a target of these dietary
flavonoids in human tumor cells and that inhibition of the proteasome by
flavonoids may be one of the mechanisms responsible for their cancer-preventive
effects.
Osteoporosis, bone health
Cytotechnology. 2014 Feb 6. Apigenin
inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in
ovariectomized mice.
Studies
Synergistic interaction between
hesperidin, a natural flavonoid, and
diazepam.
Eur J Pharmacol. 2005.
It has been recently reported the presence in Valeriana of the flavone
6-methylapigenin and the flavanone glycoside hesperidin. The apigenin derivative
is a ligand for the benzodiazepine binding site in the gamma-aminobutyric acid
receptor type A (GABA(A)) and has anxiolytic properties. Hesperidin has sedative
and sleep-enhancing properties but is not a ligand for the benzodiazepine
binding site. 6-Methylapigenin is able to potentiate the sleep-enhancing effect
of hesperidin. In this work we demonstrate that this property is shared with
various GABA(A) receptor ligands, among them the agonist diazepam, which was
used to study the potentiation as measured in the hole board test. Isobolar
analysis of the results showed the interaction being synergistic. We discarded
pharmacokinetic effects or a direct action of hesperidin on the benzodiazepine
binding site. A possible use of hesperidin properties to decrease the effective
therapeutic doses of benzodiazepines is suggested.
Decreased pro-inflammatory cytokine production by
LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin,
luteolin or chrysin, due to selective elimination of monocytes / macrophages.
Biochem Pharmacol. 2005.
Apigenin and its structural analogues chrysin and luteolin were used to
evaluate their capacity to inhibit the production of pro-inflammatory cytokines
by lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells
(PBMC). Furthermore, flowcytometric analysis was performed to compare the
effects of apigenin, chrysin, luteolin, quercetin and naringenin on the
different cell types present in PBMC. LPS-stimulated PBMC were cultured in the
presence of the flavonoids and TNFalpha, IL-1beta and IL-6 were measured in the
supernatants. In parallel, metabolic activity of the PBMC was determined by
measuring succinate dehydrogenase activity. Apigenin, chrysin and luteolin
dose-dependently inhibited both pro-inflammatory cytokine production and
metabolic activity of LPS-stimulated PBMC. With increasing concentration of
apigenin, chrysin or luteolin the monocytes/macrophages disappeared as measured
by flowcytometry. This also appeared to occur in the non-LPS-stimulated PBMC. At
the same time there was an increase in dead cells. T- and B-lymphocytes were not
affected. Quercetin and naringenin had virtually no effects on cytokines,
metabolic activity or on the number of cells in the studied cell populations. In
conclusion, monocytes were specifically eliminated in PBMC by apigenin, chrysin
or luteolin treatment in vitro at low concentrations (around 8 microM), in which
apigenin appeared to be the most potent.
The flavones
luteolin and apigenin inhibit in vitro antigen-specific
proliferation and interferon-gamma production by murine and human autoimmune T
cells.
Biochem Pharmacol. 2004.
Flavonoids such as luteolin, fisetin and apigenin are inhibitors of
interleukin-4 and interleukin-13 production by activated human basophils.
Int Arch Allergy Immunol. 2004.
Molecular modeling of flavonoids that inhibits xanthine oxidase.
Biochem Biophys Res Commun. 2002.
The inhibition of xanthine oxidase activity by various flavonoids was
assessed. All of the tested flavonoids were competitive inhibitors, and from the
kinetic analysis suggested that flavonoids bind to the reactive site. To further
understand the stereochemistry between these flavonoids and xanthine oxidase,
structure-based molecular modeling was performed. Apigenin was the most potent
inhibitor.
questions
Q. Can a flavonoid supplement such as apigenin be used with tongkat ali
LJ100?
A. Probably, but keep dosages low.
Q. Excellent review of the pathways associated with
apigenin, Luteolin- flavones etc. Briefly, I find apigenin in combination with the other flavonoids to be an exciting
treatment for prostate cancer patients, specific to inhibiton of fatty acids
synthase activity /angiogenesis. However, can we get
enough of the flavonoids in the olive leaf product to mount a successful
campaign? I believe, with synergy, we will need at least 1gram of apigenin
alone.
A. It is difficult to know at this time with hardly any
research done with apigenin and prostate cancer. Perhaps many types of
flavonoids would help beside apigenin. Please see the
prostate cancer
page for updates.
Q. There is a great deal of very promising information
about the potential value of apigenin at doses of about 150 mg/day in animal
models of prostate cancer, and there are no apparent toxicities. However, I
cannot find a source for apigenin in anything but trivial quantities. Do you
know of such a source?
A. I am not aware of any particular supplement companies that make
an apigenin supplement product by itself.
Q. The U.S.D.A says that apigenin is an
aromatase
Inhibitor. Do you have any info on that.
A. I have not come across human studies regarding the in vivo
effect of apigenin supplements in terms of aromatase inhibition. There have been
some in vitro and animal studies that indicate apigenin and other flavonoids to
have aromatase inhibiting activity, but whether these flavonoids, when ingested
as supplements, have a significant effect in humans has yet to be fully
elucidated.
On your apigenin page, a reader asked where to find this
supplement in non-trivial quantities. I have had this same problem, since the
most common formulation is chamomile extract standardized to 1.5% Apigenin.
That's better than nothing but probably not much more than can be obtained
dietarily through chamomile tea or broccoli. I, and probably others, would like
to find a more potent form in case it would work therapeutically in ways similar
to lab and animal studies reported recently. (Of course I realize that there are
many questions of bioavailability and delivery that have not been addressed
yet.) Recently I have seen advertising for 50-mg Apigenin capsules from Swanson.
Their standard supplement label lists Apigenin 50 mg and no other measureable
ingredients so I assume it is fairly pure. However theirs is extracted from
grapefruit. Does it make any difference what food product it comes from?
Probably not, as long as the quality of the product is good
and the capsules do contain the actual ingredient, it should not matter where it
is derived from.
Q. I wanted to let you know that it is currently available from Swanson in 50 mg capsules. It may be available from other sources now but I ran into it on amazon dot com.
Is there any research you know of that would suggest the
minimum oral intake of apigenin to have an appreciable effect on, for example,
residual OvCa cells present during post-chemotherapy remission? I have found
several interesting mouse studies but I have no idea whether a daily dose of 50
or 100 mg would be likely to produce any effect in a human subject. Please
understand I am not asking for medical advice, just looking for existing
information that might be useful for reaching our own conclusions.
I am not aware of such research as of December 2009.